
NASA Contractor Report 189742

ICASE Report No. 92-68

ICASE

IMPLEMENTATION OF A PARALLEL UNSTRUCTURED
EULER SOLVER ON SHARED AND DISTRIBUTED
MEMORY ARCHITECTURES

D. J. Mavriplis
Raja Das
Joel Saltz
R. E. Vermeland

NASA Contract Nos. NAS1-18605 and NAS1-19480

December 1992

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

IW A
Nalional Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23665-5225

0 _
_0
P- oo

P.4 to oo
I -,= _1

U ,,t"
O" C
z :_ 0

i





IMPLEMENTATION OF A PARALLEL UNSTRUCTURED

EULER SOLVER ON SHARED AND DISTRIBUTED

MEMORY ARCHITECTURES

D. J. Mavriplis, Raja Das, and Joel Saltz 1

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681

R. E. Vermeland

Cray Research, Inc.

Eagen, MN 55121

ABSTRACT

An efficient three dimensional unstructured Euler solver is parallelized on a Cray Y-

MP C90 shared memory computer and on an Intel Touchstone Delta distributed memory

computer. This paper relates the experiences gained and describes the software tools and

hardware used in this study. Performance comparisons between the two differing architec-

tures are made.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract Nos. NAS1-18605 and NAS1-19480 while the first, second, and third authors were in residence at the

Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,
Hampton, VA 23681.



i



1. Introduction

In the past ten years, supercomputer performance has steadily increased more than one

hundred fold. This has allowed computational aerodynamicists to simulate increasingly more

complex mathematical models of fluid flow and compute the flow over more complicated

geometries. Most aircraft manufacturers are today solving the inviscid form of the Navier-

Stokes equations in a production environment. The production use of such codes is limited,

however, by the difficulty of generating a suitable mesh and by the speed and size of the

computation.

The mesh generation issue has been addressed by many researchers with varying degrees

of success, la One of the more promising approaches is to discretize space into tetrahedral

elements, a'4'5'6 This provides a great deal of geometric flexibility so that highly complex

shapes can be modeled accurately. Several automatic mesh generation methods are being

developed which will allow engineers to more easily construct a mesh around a complex

aircraft configuration, r's'9 As these methods become more robust, this current production

bottleneck will be removed and engineers will require fast solution times to keep project

data flowing.

The time to solution is influenced by the efficiency of the algorithm, and the sustained

computation rate of the supercomputer. The unstructured Euler solver used in this study,

EUL3D, is numerically efficient. It has been designed to minimize memory overhead, mini-

mize the amount of gather/scatter which results from the use of indirect addressing on vector

machines, and provide a rapid convergence to the steady state solution. The first two items

are achieved by using a compact, edge based data structure, which minimizes the amount

of indirect memory access required in the compute intensive routines. Accelerated converge

rates have been achieved through the use of a multigrid algorithm specifically designed to

work effectively on unstructured grids. 4

EUL3D was developed on a Cray Y-MP shared memory vector/parallel computer and

ported to an Intel Touchstone Delta distributed memory parallel computer. These machines

allow solutions of large models to be computed in a matter of minutes, making production use

viable and attractive. In fact, solution times are currently fast enough to effectively use this

code in a design loop, allowing engineers to optimize aircraft shapes for best performance.

In the next few years, as supercomputers again increase sustained performance levels, such

codes may be employed as design tools in a production environment.

This paper relates the experience gained in parallelizing EUL3D on shared memory and

distributed memory platforms. The software tools and hardware used in this study are also

described and performance comparisons between the Intel Touchstone Delta and the Cray

Y-MP C90 supercomputers are given.



2. Three Dimensional Unstructured Solver

2.1. Data structure

Complex aerodynamic shapes require high resolution meshes, and consequently, large

numbers of grid points. In order to keep massive problems such as this tractable, one must

avoid incurring excessive memory and CPU overheads by using efficient data structures that

map effectively onto the machine architecture. Parallelization issues become challenging,

since unstructured solvers operate on random data sets, which result in large sparse matrices.

EUL3D uses a compact vertex based scheme, with an edge based data structure. The

flow variables are stored at each vertex in the mesh, and the residuals are assembled using

loops over the list of edges that define the connectivity of the vertices. By partitioning the

mesh or by ordering the lists of edges appropriately, work can be spread effectively over

multiple processors.

2.2. Single grid solver

Since a complete mathematical derivation and description of the solver has been previ-

ously documented by Mavriplis 4 we will present an abbreviated description of the base solver

that drives the multigrid algorithm.

A Galerkin finite element approach, using piecewise linear flux functions over each in-

dividual tetrahedra, is used to spatially discretize the domain. This type of discretization

corresponds to a central differencing approach often employed on structured meshes, and

therefore requires additional artificial dissipation to maintain stability. This is constructed

as a blend of Laplacian and biharmonic operators on the conserved variables. The bihar-

monic operator acts everywhere in the flow field except near shock waves, where the Laplacian

operator is turned on to prevent oscillations in the solution.

The spatially discretized equations form a system of coupled ordinary differential equa-

tions which are then integrated in time to obtain a steady state solution. A five stage

Runge-Kutta scheme is used for the time integration, where the convective terms are eval-

uated at each stage of the time stepping scheme, and tile dissipative terms are evaluated

only at the first two stages and then frozen for the remaining stages. A complete multistage

time-step, in which the solution is advanced from time level n to n + 1 can be written as

2



with

w(o)

11)(1) :

w(2) =

w(a)

1./2(4)

__ W n

w (°) - alDt[Q(w(°)) - D(w(°))]

w (°) - a2Dt[Q(w (1)) - D(w('))]

= w (°) - aaDt[Q(w(2)) - D(w('))]

= w(o)_ a4Dt[Q(w(3))- D(w(1))]

w (5) = w(°) - asDt[Q(w(4)) - D(w('))]

wn+ ' __. W (5)

1 1 3 1

al =_, a2=-_, aa=-_, a4=-_, as= 1

(1)

where w represents the conserved variables, Q(w) is the convective operator, D(w) is the

dissipative operator and Dt represents the discrete time step. The convective and dissipative

terms are computed separately. Q(w) is computed in a single loop over the edges, while D(w)

requires a twopass loop over the edges to assemble the biharmonic dissipation.

To accelerate convergence of the base solver, locally varying time steps and implicit

residual averaging are used.

The above scheme has been designed to rapidly damp out high frequency error compo-

nents, which is a necessary attribute for a good multigrid driving scheme.

2.3. Multigrid solver

The multigrid solver uses a set of progressively coarser meshes to calculate corrections

to a solution on the fine mesh. The advantages of time stepping on the coarser meshes

are twofold: first, the permissible time step is much greater, since it is proportional to the

cell size; and secondly, the computational work is much smaller due to the decrease in the

number of tetrahedra.

On the finest grid, the flow variables are updated using the five stage scheme of equations

(1). The residuals and flow variables are then transferred to the next coarser grid. If R'

represents the transferred residuals and w' the transferred flow variables, then a forcing

function on the coarse grid can be defined as

P = R'- R(w'). (2)

Now on the coarse grid, time stepping proceeds as follows

w(q) = w(q-') _ alDt[R(w (q-D) + P] (3)

3



for tile q-th stage. In the first stage, w(q- 1) reduces to the transferred flow variable w'.

Therefore, the computed residuals on the coarse grid are canceled by the second term in

the forcing function P, leaving only the R _ term. This indicates that the solution on the

coarse grid is driven by the residuals on the fine grid, so that as the residuals are driven to

zero on the fine grid, no corrections will be generated by the coarse grid. This procedure

is repeated successively on coarser grids. When the coarsest grid is reached, the corrections

are transferred back to the finer grids.

EUL3D uses a sequence of completely unrelated coarse and fine grids. In this manner,

coarse grids can be designed to optimize the speed of convergence, whereas the tine grid

can be constructed to provide the most accurate solution. Furthermore, since no relation

is assumed between the various meshes in the multigrid sequence, new finer meshes can be

introduced by adaptive refinement.

Information is interpolated between the fine and coarse grids by use of four interpolation

addresses and four interpolation weights for each vertex. Since these values are static, they

are calculated in a pre-processing phase using an efficient graph traversal search algorithm.

The cost of pre-processing is roughly equivalent to one or two flow solution cycles on the

finest mesh.

The storage overhead incurred by the multigrid strategy corresponds to roughly a 33%

increase in memory over the single grid scheme, which includes the storage of all the coarser

grid levels, and the inter-grid transfer coefficients. Various multigrid strategies are possible.

In this work, both V and W multigrid cycle strategies have been examined. The two cycles

are illustrated in Figure 1.

In the case of a V-cycle, a time-step is first performed on the finest grid of the sequence.

The flow variables and residuals are then transferred to the next coarser grid, where a new

time-step is performed. The process is repeated until the coarsest grid of the sequence is

reached, and the resulting corrections are then interpolated back down to the finest grid.

Thus, within a multigrid V-cycle, a single time-step is performed on each grid level. The

W-cycle strategy, as depicted in Figure 1, is a recursive approach which weights the coarse

grids more heavily. The convergence histories of all three solution strategies for the problem

described in the next section are displayed in Figure 2.

Each multigrid W-cycle requires more operations than a V-cycle, since more coarse grid

visits are effected. In a purely sequential environment, a W-multigrid cycle requires approx-

imately 90% more CPU time than a single grid cycle, while the multigrid V-cycle requires

75% more CPU time. However, both multigrid strategies provide close to an order of mag-

nitude increase in convergence, as can be seen from Figure 2, thus greatly outweighing their

increased cost per cycle.



The W-cycle has most often been found to provide sufficient increasesin convergence
over the V-cycle strategy in order to justify its extra cost. However,in a distributed memory

parallel environment, the extra coarse-gridwork is accompaniedby an increasedratio of
communication to computation, since the coarsergrids representsmaller data sets spread

overanequally largenumberof processors.The issueof which multigrid cycleconstitutesthe

most efficientoverall solution strategy maythen becomeanarchitecture-dependentproblem.

2.4. Pre-processing operations

Prior to the flow solution operation, an unstructured mesh must be generated. In the

event that a multigrid solution strategy is to be employed, additional coarse grids must

also be generated. These are constructed using an advancing front grid generator 9 run

sequentially on a single CRAY Y-MP processor. Each grid must then be transformed into

the appropriate edge based data structure for the flow solver, which entails constructing a

list of edges with the addresses of the two end vertices for each edge, and a set of coefficients

associated with each edge. For use on vector architectures, a coloring algorithm is then

employed to divide the edge loop into multiple non-contiguous groups, such that within each

group no data recurrences occur (i.e. no two edges access the same vertex). For use on

distributed memory parallel architectures, the mesh must be partitioned and each partition

assigned to an individual processor. The partitioning strategy must ensure load balancing

and minimize communication by creating partitions of approximately equal size, and by

minimizing the partition surface-to-volume ratios. In the multigrid strategy, the patterns for

transferring data between the various meshes of the multigrid sequence must be determined.

This is done using an efficient graph traversal search routine in a pre-processing operation.

The result is a set of four addresses and four weights for each vertex of the mesh determining

the interpolation of data from the current mesh to tile next mesh in the sequence.

All of these preprocessing Operations are performed sequentially on a single CRAY Y-MP

processor. Apart from the grid generation and the partitioning problem, all operations are

relatively inexpensive when implemented appropriately, usually requiring no more than the

equivalent of one or two flow solution cycles. However, the particular partitioning strategy

currently employed m was found to require CPU times comparable to the amount of time

required for the entire flow solution procedure. Furthermore, the sequential implementa-

tion of all these preprocessing operations will inevitably lead to a bottleneck as the flow

solution procedure becomes increasingly efficient with machines involving higher degrees of

parallelism.

On the other hand, the preprocessing may be amortized over a large number of flow

solutions. A set of grids may be generated, preprocessed and partitioned or colored, and



then employedto solve the flow over the particular geometry for a whole range of Mach

numberand incidenceconditions,as is sometimesrequired in an industrial setting.

3. Shared Memory Implementation

3.1. Approach

The majority of the computations made in EUL3D are in loops over the edges of the mesh

and there are typically well over one million edges in a mesh around a complex geometry.

These loops move randomly through memory using indirect addressing. On a shared memory,

vector/parallel machine like the Cray Y-MP C90, it is easiest to split the loops into groups or

colors such that within each group, no recurrences occur. Each group can then be vectorized

by either adding an argument to the compile statement, or by inserting a compiler directive

at the beginning of each loop.

A simple parallelization strategy is to further divide the colorized groups into subgroups

that can be computed in parallel. This is automatically done at compile time by the auto-

tasking compiler. The subgroups are then distributed over all processors, taking advantage

of the complete vector and parallel power of the machine.

For the problem used in this work, the number of fine grid edges was about 5.5 million.

Since the typical number of groups is not high, say 20 to 30, the vector lengths within each

subgroup are still large enough to fully realize the vector speedup of the machine. However, as

the number of processors continues to increase, the vector lengths decrease, and this method

becomes less efficient for a fixed problem size. For the case run in this study, the hypothetical

use of 128 processors would still yield vector lengths of the order of 2000 elements, which is

sufficient to mask slave CPU start-up overhead while achieving good vector performance.

3.2. Performance results

Figure 3 illustrates an unstructured mesh generated over a three dimensional aircraft

configuration. The mesh contains a total of 106,064 points and 575,986 tetrahedra and is

the second finest mesh used in the multigrid sequence. The finest mesh, which is not shown

due to printing resolution limitations, contains 804,056 points and approximately 4.5 million

tetrahedra. The inviscid flow was calculated using EUL3D on a 16 processor Y-MP C90

with 256 MWords of memory. Four meshes were used in the multigrid sequence.

The freestream Mach number for this case was 0.768 and the angle of attack was 1.116

degrees. The computed Mach contours are shown in Figure 4. Good shock resolution is

observed, due to the large number of grid points employed. The convergence rates for this

case using the single grid and the two multigrid strategies are shown in Figure 2.



The W-cycle multigrid strategy yields the fastest convergence rate on a per cycle basis.

After 100 W-cycles, the residuals were reduced by nearly six orders of magnitude. This run

took 242 seconds of wall clock time running in dedicated mode, including the time to read all

grid files, write out the solution, and monitor the convergence by summing and printing out

the average residual throughout the flow field at each multigrid cycle. The run required 94

million words of memory. The average speed of the calculation was 3.1 GFlops, as measured

by the Cray hardware performance monitor. 11

These results are documented in Table lc, including the performance for runs using 1, 2,

4, and 8 processors. In Tables la and lb similar statistics are documented for the single grid

and the V-cycle multigrid runs. In all cases, a high degree of parallelism is achieved yielding

on the average a CPU to wall clock time ratio of 15.4 for 16 processors. This indicates that

the algorithm has achieved greater than 99% parallelism. However, total CPU time increases

are observed as the number of concurrent CPUs increases (approximately 20% increase for

16 CPUs). This is due to the overhead associated with multitasking. The overall speedup

achieved on 16 CPUs is thus 12.4 times the single CPU speed for the W-cycle in Table lc.

Another characteristic of these runs is the relative insensitivity of the overall computa-

tional rates to the solution strategy. The single grid and the two multigrid strategies all

achieve similar computational rates on 16 CPUs. This is attributed to the high memory

bandwidth capacity of the CRAY Y-MP C90. Under these circumstances, just as in the

sequential case, the W-cycle mu]tigrid strategy is the most effective overall. A solution con-

verged to within six orders of magnitude is obtained in 242 seconds using all 16 processors.

A similar level of convergence using the V-cycle would require roughly 360 seconds, and the

single grid strategy would require approximately 1 hour.

4. Distributed Memory Implementation

4.1. Approach

The implementation of EUL3D on the distributed memory MIMD architecture of the

Intel Touchstone Delta machine was carried out using a set of software primitives known as

PARTI (Parallel Automated Runtime Toolkit at ICASE). These tools have been designed

to ease the implementation of computational problems on parallel architecture machines by

relieving the user of low-level machine specific issues. The design philosophy has been to

leave the original (sequential) source code essentially unaltered, with the exception of the

introduction of various calls to the PARTI primitives which are imbedded in the code at the

appropriate locations. These primitives allow the distribution and retrieval of data from the

numerous processor local memories. Eventually, a parallel compiler is planned which should



be capableof automatically imbedding the primitives at the appropriate locations in the

sourcecode.12This implementation formedpart of a researchproject aimedat demonstrating

the effectivenessof thesetools, while providing valuable input to the designand formulation
of such tools.13

In distributed memorymachinesthe data and the computational work must be divided

betweenthe individual processors.The criteria for this partitioning is to reducethe volume

of interprocessordata communicationand also to ensuregood load-balancing.For the case

describedin this paper, this correspondsto partitioning eachmeshof the multigrid sequence

and assigningeachpartition to a particular processor.Sincethe majority of the computation

is performed as loopsoveredgesof the mesh,an edgewhich hasboth end points inside the

same partition (processor) requires no outside information. On the other hand, edges which

cross partition boundaries require data from other processors at each loop.

In this work, partitioning is done sequentially using a recursive spectral approachfl ° This

method is known to deliver good load balancing and to minimize inter-partition surface

area (and thus communication requirements). However, the expense of the partitioning

operation has been found to be comparable to the cost of a sequential flow solution. If

multiple flow solutions are required on the same mesh, this work can be amortized over a

large number of flow solutions, since this is a preprocessing operation. The development of

more efficient partitioning strategies is still an important concern. After the input data has

been partitioned, a data file is created for each processor to read. Although the processors

execute the same code, the partitioning of the input data causes each of the processors to

perform the computation on a separate part of the mesh.

In distributed memory MIMD architectures, there is typically a non-trivial communica-

tions latency or startup cost. For efficiency reasons, information to be transmitted should be

collected into relatively large messages. The cost of fetching array elements can be reduced

by precomputing what data each processor needs to send and to receive. In irregular prob-

lems, such as those resulting from unstructured mesh problems, this is inferred by the subset

of all mesh edges which cross partition boundaries. The communications pattern depends

on the input data (i.e. the mesh). In this case, it is not possible to predict at compile time

what data must be prefetched. We work around this problem by transforming the original

loop into two constructs called inspector and executor. TM During program execution, the in-

spector examines the data references made by a processor, and calculates what off-processor

data needs to be fetched. The executor loop then uses the information from the inspector

to implement the actual computation. The PARTI primitives can be used directly by pro-

grammers to generate inspector/executor pairs. Each inspector produces a communications

schedule, which is essentially a pattern of communication for gathering or scattering data.

8



The executor has embedded PARTI primitives to gather or scatter data. The prinfitives

are designed to minimize the effect on the source code, such that the final parallel code

remains as close as possible to the original sequential code. Latency or start-up cost is

reduced by packing various small messages with the same destinations into one large message.

We performed two types of optimization, both of which contribute to improve the total

computational rate. We improve the single processor computation rate by reordering both

the nodes and the edges which constitute the mesh. Next, we perform communication

optimizations to reduce the volume of data that must be transmitted between processors.

The communication optimizations are built into the software primitives.

4.2. Node and edge reordering

When the data access pattern is irregular, as it is in this case, the i860 (the Delta

processors) memory hierarchy causes low computational rates. The i860 has three levels of

memory. The first level are the registers, followed by the data cache and in the end the

main memory. If the data access pattern is such that most of tile time the data residing in

the registers and the cache is utilized then very high computational rates can be achieved.

Irregular data access patterns cause excessive cache misses which results in performance

degradation.

Most of the computational work in EUL3D appears as loops over mesh edges. The

edge list was therefore reordered such that all the edges incident on a vertex are listed

consecutively. In this manner, once the data for a vertex is brought into the cache it can be

used a number of times before it is removed. Clearly, this causes better cache utilization.

We also performed node renumbering which causes data associated with nodes linked by

mesh edges to be stored in nearby memory locations. These optimizations alone improved

the single node computational rate by a factor of two.

4.3. Communications optimizations

In EUL3D, we encounter a variety of situations in which the same data is accessed by

several consecutive loops. For instance, consider a step of the Runge Kutta integration. Flow

variables are used in sequence of three loops over edges followed by a loop over boundary

faces. The flow variables are only updated at the end of each of the Runge Kutta steps. We

can obtain all of the off-processor flow variables needed at the beginning of the step. This

makes it advantageous to develop methods that avoid bringing in the same data more than

once.

We have developed optimizations which make it possible to track and reuse off-processor



data copies. We do this by modifying our software so that we are able to generate incremental

communications schedules. Incremental schedules obtain only those off-processor data not

requested by a given set of pre-existing schedules. Hash-tables are used omit duplicate off-

processor data references. Using these incremental schedules we can significantly reduce the

volume of communication.

4.4. Performance results

The flow cMculations performed on the Cray Y-MP C90 were repeated on the Intel

Touchstone Delta machine. The single grid and V-cycle multigrid strategies were run on

256 and 512 processors. The W-cycle multigrid results are scaled from experience on a

smaller grid. The solution and convergence rates obtained were, of course, identical to those

displayed in Figures 2 and 4. Table 2a, 2b, and 2c depict the performance statistics obtained

for these runs. The total wall clock time required to run 100 cycles for each solution strategy

is given. This time is then broken down into computation and communication time. The

computational rate (MFlops) obtained by counting the number of operations in each loop

are also given. These rates are about 10% more conservative than those based on the CRAY

hardware performance monitor 11 (using a simple time scaling of the CRAY performance

numbers).

The single grid solution strategy yields the highest computational rates achieving 1.5

CHops on 512 Delta processors. However, this method is also the slowest to converge.

The multigrid V-cycle procedure exhibits a degradation in computational rates of about

10 to 15% over the single grid case, while the W-cycle rates are estimated to be 25 to

30% lower. This is due to the increased amount of work performed on the coarse grid

levels, which represent smaller data-sets distributed over the same number of processors,

thus increasing the communication to computation ratio. The communication required for

inter-grid transfers (between coarse and fine grids of the multigrid sequence) has been found

to constitute a small fraction of the total communication costs.

The reduced computational efficiency of the multigrid strategies and the additional work

required at each cycle are more than outweighed by the faster convergence rates of these

methods over the single grid strategy. A single grid solution converged to 6 orders of mag-

nitude on 512 Intel Delta processors would require approximately 1 hour of wall clock time,

while the V and estimated W-cycle multigrid strategies would require 1083 and 843 seconds

respectively. For certain cases the V-cycle may be the most effective strategy for the Intel

Delta.

l0



5. Shared vs. Distributed Memory- A Comparison

From the preceding sections, it is evident that the performance of EUL3D on both ma-

chines is comparable with the Y-MP C90 outperforming the Touchstone Delta by roughly a

factor of two. The 512 Intel Delta machine appears to be roughly equivalent to a 5 processor

CRAY Y-MP C90. The full CRAY Y-MP C90 achieved roughly 21% of its peak rated per-

formance, while the Intel Delta achieved 5% of its theoretical peak. Both machines miss the

mark on peak performance, mainly due to indirect addressing and the random nature of the

data-sets. Such low utilization on the Intel i860 processors is rather common, and can be at-

tributed to the small cache and low memory bandwidth of the processors. More significantly

perhaps, is the ratio of computation to communication achieved on the 512 processor Delta

machine, which is of the order of 50% for this problem, thus implying a relatively efficient

implementation. This ratio, however, varies significantly with the size of the problem, the

number of processors employed, and the particular solution strategy chosen. On the other

hand, the computational rates achieved on the CRAY Y-MP C90 are relatively insensitive

to problem size and solution strategy, a fact which is attributable to the shared memory

architecture of the machine, and the large bandwidth to memory.

Parallelizing EUL3D on the CRAY Y-MP C90 was a relatively simple task, while the im-

plementation on the Intel Touchstone Delta machine formed the basis of a research project) a

The main reason for this disparity in efforts is the existence of sophisticated software tools

such as automatic vectorizing and parallelizing compilers for the CRAY Y-MP series ma-

chines. While such tools are currently unavailable for distributed memory architectures, the

current implementation was carried out using a set of experimental tools (i.e. the PARTI

primitives) with the aim of demonstrating the effectiveness of such tools, as well as aiding in

their formulation and development. The situation can be likened to the early days of vector

supercomputing, when considerable programming effort was required to achieve the full vec-

tor potential of such machines. We believe that software tools will be critically important in

determining the success of various parallel architectures in the future.

6. Conclusions

We have shown that a numerically efficient computational fluid dynamics code can be

parallelized on both shared memory and distributed memory machines. Both machines yield

comparable performance rates. However, the availability of sophisticated software tools en-

abled the parallelization of EUL3D on the shared memory vector/parallel CRAY Y-MP C90

with minimal user input. On the other hand, the implementation on the distributed memory

massively parallel architecture of the Intel Touchstone DELTA machine is considerably more

11



involved. As massivelyparallel softwaretools becomemore mature, the task of developing
or porting softwareto suchmachinesshoulddiminish.

We havealso shownthat with today's supercomputers,and with efficient codessuchas

EUL3D, the aerodynamiccharacteristicsof complexvehiclescanbe computedin a matter
of minutes,making designusefeasible.

With the availability of rapid solution procedures,grid generation and preprocessing
operations,which arepresentlyexecutedsequentially,becomethe bottlenecks. In particular,

the partitioning strategy employedfor the distributed memory parallel implementation ,

although effective, is excessivelycostly. More researchis required in this area in order

to developmore efficient and parallel partitioners. Finally, the issuesinvolved in parallel

meshgenerationand parallel adaptive meshrefinementmust also be investigated in order

to developa completeand effectivesolution package.

12



References

[1] Thompson, J. F., "A Composite Grid Generation Code for General Three-Dimensional

Regions," AIAA Paper 87-0275, January, 1987.

[2] Benek, J. A., Buning, P. G., and Steger, J. L., "A 3-D Chimera Grid Embedding

Technique," AIAA Paper 85-1523-CP, July, 1985.

[3] Jameson, A., Baker, T. d., and Weatherill, N. P., "Calculation of Inviscid Transonic

Flow Over a Complete Aircraft," AIAA Paper 86-0103, January, 1986.

[4] Mavriplis, D. J., "Three Dimensional Unstructured Multigrid for the Euler Equations,"

Proc. of the AIAA 10th Comp. Fluid Dyn. Conf., AIAA Paper 91-1549, June, 1991.

[5] Smith, W. A., "Multigrid Solution of Transonic Flow on Unstructured Grids," Re-

cent Advances and Applications in Computational Fluid Dynamics, Proceedings of the

ASME Winter Annual Meeting, Ed. O. Baysal, November, 1990.

[6] Peraire, J., Peiro, J., and Morgan, K., "A 3D Finite Element Multigrid Solver for the

Euler Equations," AIAA Paper 92-0449, January, 1992.

[7] Baker, T. J., "Three Dimensional Mesh Generation by Triangulation of Arbitrary Point

Sets," Proe. of the AIAA 8th Comp. Fluid Dyn. Conf., AIAA Paper 87-1124, June,

1987.

[8] Weatheril], N. P., "The Delaunay Triangulation," In Advances in Numerical Grid Gen-

eration, Mississippi State University Grid Courses, August, 1990.

[9] Gumbert, C., Lohner, R., Parikh, P., and Pirzadeh, S., "A Package for Unstructured

Grid Generation and Finite Element Flow Solvers," AIAA Paper 89-2175, June 1989.

[10] Pothen, A., Simon, H. D., and Liou, K. P., "Partitioning Sparse Matrices with Eigen-

vectors of Graphs," SIAM J. Math Anal. Appl., 11:430-452, 1990.

[11] UNICOS Performance Utilities Reference Manual, SR-2040 6.0, Cray Research, Inc.

[12] Saltz, J., Berryman, H., and Wu, J., "Runtime Compilation for Multiprocessors," Con-

currency, Practice and Experience, 3(6):573-592, 1991.

[13] Das, R., Mavriplis, D. J., Saltz, J., Gupta, S., and Ponnusamy, R., "The Design and

Implementation of a Parallel Unstructured Euler Solver Using Software Primitives,"

AIAA Paper 92-0562, January, 1992.

13



[14] MirchandaneyR., SaltzJ. H., Smith R. M., Nicol D. M., and CrowleyK., "Principles of

Runtime Support for Parallel Processors,"Proceedingsof the 1988ACM International

Conferenceon Supercomputing,St. Malo France,pages140-152,July, 1988.

14



CPUs Wall Clock CPU sec. MFlops
1 1916 1878 252
2 974 1909 495
4 508 1957 966
8 273 2038 1856
16 156 2185 3252

Table la: Y-MP C90 speedsfor EUL3D running 100 single grid cycles.

CPUs Wall Clock CPU sec. MFlops

1 2586 2557 247

2 1326 2611 485

4 698 2572 945

8 380 2805 1804

16 223 3085 3161

Table lb: Y-MP C90 speeds for EUL3D running 100 multigrid cycles using the V cycle.

CPUs Wall Clock CPU sec. MFlops

1 3041 2992 249

2 1552 3048 484

4 815 3146 939

8 444 3323 1790

16 268 3709 3136

Table lc: Y-MP C90 speeds for EUL3D running 100 multigrid cycles using the W cycle.

15



Nodes

256
512

Secondsper 100cycles
Communication Computation Total

121 326 448
95 170 265

Rate
MFlops

778
1496

Table 2a: TouchstoneDelta speedsfor EUL3D running 100singlegrid cycles.

Nodes Secondsper 100cycles

256
512

Rate

Communication Computation I Total MFlops
536 427 963 680
374 231 605 1252

Table 2b: TouchstoneDelta speedsfor EUL3D running 100multigrid cyclesusing the V
cycle.

Nodes Secondsper 100cycles
Communication Computation Total

256 787 596 1383
512 565 278 843

Rate
MFlops

573
1030

Table2c: EstimatedTouchstoneDelta speedsfor EUL3D running 100multigrid cyclesusing
the W cycle.

16



3 Levels

)
)

4 Levels

4 Level Cycle ]

5 Levels

3 Levels

4 Levels

4 Level Cycle _ 4 Level Cycle ?

5 Levels

Figure 1: Multigrid V and W-cycles. Euler time steps are depicted by E, interpolations are

depicted by I.

0

10 -2

10-4

10 "6

I I I I I

0 100 200 300 400 500

Figure 2: Convergence history for single grid and for V and W multigrid cycles.

17



\

Figure 3: Unstructured mesh about a three dimensional aircraft configuration. The mesh

shown is the second finest in the multigrid sequence and contains 106,064 nodes and 575,986

tetrahedra. The finest mesh, which is not shown due to printing limitations, contains 804,056

modes and approximately 4.5 million tetrahedra.

Figure 4: Computed Mach contours of Transonic Flow over Aircraft Configuration.

18









REPORT DOCUMENTATION PAGE
i fO,m ,_Ff'ro_eH

OtV_E" ACC C;04-CIF.E

I. AGENCY USE ONLY (Leave blank) I 2 REPORT DATE 13 REPOF, T TYPE AND DATES COVERED

I

I December 1992 Contractor ReportI
4. TITLE AND SUBT;TLE

IMPLEMENTATION OF A PARALLEL UNSTRUCTURED EULER SOLVER

ON SHARED AND DISTRIBUTED MEMORY ARCHITECTURES

6 AUTHOR(S)

D.J. Mavriplis, RaJa Das, Joel Saltz and R.E. Vermeland

5 FUND;NG NUMBERS

C NASI-I8605

C NASI-I9480

WU 505-90-52-01

7. PERFORMING ORGANIZATION NAME{S) AND ADDRESS{ES)

Institute for Computer Applications in Science

and Engineering

Mall Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING,'MONITORtNG AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

8. PE_ _','],RMING O_GANIZt, TION
REPORT NUMBER

ICASE Report No. 92-68

10 SPONSORING MON'_TORtNG

AGENCY REPORT NUMBER

NASA CR-189742

ICASE Report No. 92-68

11. SUPPLEMENTARY NOTES

Langley Technical Monitor:

Final Report

Michael F. Card
Appeared in Supercomputing '92 Proc.

-- Submitted to the Journal of

Supercomputing

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 02, 34

12b. DISTRIBUTION CODE

13. ABSTRACT(Maxzmum2_Owords)

An efficient three dimensional unstructured Euler solver is parallelized on a

C_'MP C90 shared memory computer and on an Intel Touchstone Delta distributed

memory computer. This paper relates the experiences gained and describes the soft-

ware tools and hardware used in this study. Performance comparisons between two

differing architectures are made.

14.SUBJECT TERMS

unstructured; parallel;

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

shared memory; CRAY

1S. NUMBER OF PAGES

2O
16. PRICE CODE

A03
18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATIONOF ABSTRACT

OF THIS PAGE OF ABSTRACT

Unclassified

0""'_' P,}.GZ |5

OF POOR QUALITY

Standard Form 298 (Rev 2-89)

298-102
NASA-Langley, 1992


